| | | | | · | | | | FAULT CODE | |-----------------------------------|-------|--------------------------|---|---|---|--|------------------------------------|------------------------------------| | SENSED
PARAMETER | FAULT | SENSOR
SIGNAL
TYPE | ACCEPTABLE OPERATING RANGE AND RATIONALITY | PRIMARY MALF DETECTION PARAMETERS | SECONDARY MONITORING PARAMETERS AND CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | STORAGE AND
MIL
ILLUMINATION | | MAF Sensor
Range/Perf | P0101 | Frequency | 0 to 240 gps
1000HZ to 12000HZ | Delta of 15-50 gps
between the actual
airflow and calculated
airflow | Della TPS < 2%
EGR < 75%
9V > ign voltage < 16V
Engine stable = 5 sec | 45 test failures out of 50 tests | Hot wire airflow sensor | DTC Type
A | | MAF Sensor
Circuit Low Input | P0102 | Frequency | 0 to 240 gps
1000HZ to 12000HZ | Frequency value < 1200HZ | RPM > 1
Ign voltage > 8V
Conditions stable > 0.5 sec
TPS < 75% | 395 test failures
out of 400 tests | Hot wire airflow sensor | DTC Type
A | | MAF Sensor
Circuit High Input | P0103 | Frequency | 0 to 240gps
1000HZ to 12000HZ | Frequency
value>11500HZ | RPM > 1
Ign voltage > 8V
Conditions stable > 0.5 sec
TPS < 75% | 395 test failures
out of 400 tests | Hot wire airflow sensor | DTC Type
A | | MAP Sensor
Range/Rationality | P0106 | Analog | 0 to 5V A change in MAP must be preceeded by a significant change in throttle angle and RPM. If not, a faulty MAP condition such as a "skewed" sensor exists. | Raw MAP \(\lambda\) > 5 counts | No TP sensor DTC's set Engine Running Engine Speed $\Delta < 100$ RPM Throttle Position $\Delta < 3\%$ Idle Air $\Delta < 3$ motor steps EGR Flow Rate $\Delta < 10\%$ Brake Switch State = no change Clutch Switch State = no change Power Steering State = no change AC Clutch State = no change Above stabilized for 5 seconds | 160 test failures within a 200 test samples 12.5ms loop Continuous | Pressure
Differential
Sensor | DTC Type
B | | MAP Sensor
Circuit - Low Input | P0107 | Analog | O to 5V This DTC detects a continuous short to low or open in either the signal circuit or the MAP sensor. | Raw MAP < 5 counts | No TP sensor DTC's set Engine Running Throttle Position ≥ 0% when Engine speed is ≤ 1000 RPM or Throttle Position is ≥ 5% when Engine speed is > 1000 RPM | 175 test failures
within a 200 test
sample.
12.5ms loop
Continuous | Pressure
Differential
Sensor | DTC Type
B | | MAP Sensor
Circuit -High Input | P0108 | Analog | 0 to 5V This DTC detects a continuous short to high in either the signal circuit or the MAP sensor. | Raw MAP > 220 counts | No TP sensor DTC's set Engine Running Throttle Position ≤ 2% when Engine speed is ≤ 3000 RPM or Throttle Position is ≤ 30% when Engine speed is > 3000 RPM | 175 test
failures within a
200 test
sample.
12.5ms loop | Pressure
Differential
Sensor | DTC Type
B | | | | | | | | Continuous | - | | # $96c3M_A__yE.doc$ | SENSED
PARAMETER | FAULT | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING PARAMETERS AND CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |--|-------|--------------------------|--|---|---|--|----------------------|--| | Intake Air Temp.
Sensor Circuit -
Low Input | P0112 | Analog | 0 to 5V The DTC detects a continuous short to ground in the IAT signal circuit or the IAT sensor | Low Resistance Pullup Raw IAT < 7 counts High Resistance Pullup Raw IAT < 7 counts | No VS sensor DTC's set. No ECT sensor DTC's set No airflow sensor DTCs set Vehicle speed ≥ 25mph Engine run time > 30 seconds | 175 test
failures within a
200 test sample
Continuous | Thermistor | DTC Type
B | | Intake Air Temp.
Sensor Circuit -
High Input | P0113 | Analog | 0 to 5V The DTC detects a continuous open or short to high in the IAT signal circuit or the IAT sensor | Low Resistance pullup
Raw IAT > 250 counts
High Resistance pullup
Raw IAT > 250 counts | No ECT sensor DTC's set No VS sensor DTC's set No airflow DTCs set Vehicle speed < 35mph Air flow < 12 g /second Coolant > 60°C Engine run time > 180 seconds | 175 test failures
within a 200
test sample
Continuous | Thermistor | DTC Type
B | | Engine Coolant
Temp. Sensor
Circuit-Low Input | P0117 | Analog | 0 to 5V The DTC detects a continuous short to ground in the ECTsignal circuit or the ECT sensor | Low Resistance Pullup Raw ECT < 37 counts High Resistance Pullup Raw ECT < 37 counts | Engine run time > 15 seconds | 45 test failures
within a 50 test
sample
Continuous | Thermistor | DTC Type
B | | Engine Coolant
Temp. Sensor
Circuit-High Input | P0118 | Analog | 0 to 5V The DTC detects a continuous short to high or open in the ECT signal circuit or the ECT sensor | Low Resistance pullup Raw IAT > 247 counts High Resistance pullup Raw IAT > 247 counts | Engine run time > 3 seconds | 45 test failures
within a 50 test
sample
Continuous | Thermistor | DTC Type
B | | | 1 | T | | | T | T | 1 | 1 | |---|---------------|--------------------------|--|---|---|---|----------------------|--| | SENSED
PARAMETER | FAULT
CODE | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | | Throttle Position
Sensor Circuit
Range/Rationality | P0121 | Analog | 0 to 99% The DTC detects a "skewed" or stuck TP sensor | The last throttle position value > predicted throttle position based on engine RPM. | No TP sensor DTC's set or failures flagged No MAP sensor DTC's set Engine Running MAP < 55 kpa TP sensor \(\lambda < 1\)% | 95 test failures
within a 100 test
sample
Continuous | Potentiometer | DTC Type
A | | Throttle Position
Sensor Circuit-
Low Input | P0122 | Analog | 0 to 99% This DTC detects a continuous short to low or open in either the signal circuit or the TP sensor. | Raw TP sensor signal
< 3.125 counts | Engine running | 95 consecutive test failures within a 100 test sample | Potentiometer | DTC Type
A | | Throttle Position
Sensor Circuit-
High Input | P0123 | Analog | 0 to 99% This DTC detects a continuous short to high in either the signal circuit or the TP sensor. | Raw TP sensor signal > 95 counts | Engine running | 95 consecutive test failures within a 100 test sample | Potentiometer | DTC Type
A | | Min. Cool.Temp.
to Allow C.L. Op.
Not Achieved
Without Excess.
Time | P0125 | Analog | 0 to 5V The DTC detects if a stabilized minimum closed-loop is reached and maintained after engine start-up. | Minimum stabilized
ECT = 25°C | No ECT sensor tests failing or DTC's set No IAT sensor DTC's set Vehicle speed > 5 mph IAT> 10°C ECT >10°C Start-up ECT < 30°C Closed loop timer ≥120 seconds | 20 consecutive test failures Continuous | Thermistor | DTC Type
B | | SENSED
PARAMETER | FAULT
CODE | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |--|---------------|--------------------------|---|--|---|---|--------------------------|--| | O2S Circuit-Low
Voltage(Bank 1,
Sensor 1) | P0131 | Analog | .1V to 1.0V This DTC determines if the O2 sensor or circuit is shorted to low by checking for a lean condition during steady throttle and PE. | O2 sensor voltage <.300 volts or O2 sensor voltage <.300 volts in PE mode | No TP sensor DTC's No Evap/CCP DTC's No misfire DTC's No IAT sensor DTC's No MAP DTC's No Fuel trim DTC's No injector DTC's No EGR DTC's No EGR DTC's No ECT sensor DTC's No rank sensor DTC's No MAF DTC's Closed loop Air/Fuel ratio ≥ 14.4 but ≤ 14.9 Throttle position > 5% but < 40% Above met for 2 sec. or 5 sec. in PE | 90 test failures
in a 100 test
sample
Continuous | Exhaust
Oxygen Sensor | DTC Type
B | | O2S Circuit-High
Voltage(Bank 1,
Sensor 1) | P0132 | Analog | .1V to 1.0V This DTC determines if the O2 sensor or circuit is shorted to high by checking for a rich condition during steady throttle and DFCO | O2 sensor voltage >.950 volts or O2 sensor voltage > .800 volts in DFCO mode | No TP sensor DTC's No Evap/CCP DTC's No misfire DTC's No IAT sensor DTC's No IAT sensor DTC's No Fuel trim DTC's No Fuel trim DTC's No EGR DTC's No EGR DTC's No ECT sensor DTC's No crank sensor DTC's No MAF DTC's Closed loop Air/Fuel ratio ≥ 14.4 but ≤ 14.9 Throttle position > 5% but < 40% Above met for 5 sec. or 1.8 sec. in DFCO | 40 test failures in a 100 test sample Continuous | Exhaust
Oxygen Sensor | DTC Type
B | | SENSED
PARAMETER | FAULT
CODE | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING PARAMETERS AND CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |--|---------------|--------------------------|---|---|--|---|--------------------------|--| | O2S Circuit-Slow
Response(Bank 1,
Sensor 1) | P0133 | Analog | .1V to 1.0V This DTC determines if the O2 sensor functioning properly by checking its response time. | O2 sensor average transition time: L/R > 133 msec R/L > 132 msec Diagnostic looks for O2 to toggle above and below the O2 limits in a calibrated engine run time | No TP sensor DTC's No Evap/CCP DTC's No misfire DTC's No tAT sensor DTC's No MAP DTC's No Fuel trim DTC's No injector DTC's No EGR DTC's No EGR DTC's No ECT sensor DTC's No MAF DTC's No MAF DTC's DTC P0135 (O2 Heater) not set Closed loop for > 60 sec O2 voltage low threshold.300 and high threshold .600 V Coolant temp > 85C 1000 < RPM < 3000 15gps < MAF < 28gps | 60 seconds after closed loop enable Once per key cycle | Exhaust
Oxygen Sensor | DTC Type
B | | O2S Circuit-No
Activity Detected
(Bank 1,Sensor 1) | P0134 | Analog | .1V to 1.0V This DTC determines if the O2 sensor or the O2 sensor circuit has developed an open. | O2 sensor > .400V
but < .500V | No TP sensor DTC's No Evap/CCP DTC's No misfire DTC's No MAP DTC's No MAP DTC's No Fuel trim DTC's No injector DTC's No EGR DTC's No ECT sensor DTC's No crank sensor DTC's No MAF DTC's Engine run time > 30 seconds ECT >65°C | 140 test failures
in a 150 test
sample
Continuous | Exhaust
Oxygen Sensor | DTC Type
B | | O2S Heater Circuil
Malfunction (Bank 1,
Sensor 1) | P0135 | Software | 9V to 16V This DTC determines if the O2 sensor heater is functioning properly by monitoring the amount of time necessary for the O2 sensor to become active after start - up. | The elapsed time to obtain ± .150V from the mean O2 bias voltage. *Time based on table: Time vs. Avg. MAF + Start up coolant offset. | No TP sensor DTC's No Evap/CCP DTC's No mistire DTC's No IAT sensor DTC's No IAT sensor DTC's No Fuel trim DTC's No injector DTC's No EGR DTC's No EGR DTC's No ECT sensor DTC's No MAF DTC's Engine run time > 3 seconds \(\) ECT \(\) SO'C \(\) ECT \(\) 100°C \(\) Avg MAF \(\) 28gps 9 \(\) System Voltage \(\) 16 for 3 seconds \(\) 350 V \(\) Avg, Bias \(\) 500 V | From cold start to a maximum time of 409 seconds. *Time determined by table. | Exhaust
Oxygen Sensor | DTC Type
B | | SENSED
PARAMETER | FAULT
CODE | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |--|---------------|--------------------------|---|--|---|---|--------------------------|--| | O2S Circuit-Low
Voltage(Bank 1,
Sensor 2) | P0137 | Analog | .1V to 1.0V This DTC determines if the O2 sensor or circuit is shorted to low by checking for a lean condition during steady throttle and PE. | O2 sensor voltage <.010 volts or O2 sensor voltage <.010 volts in PE mode | No TP sensor DTC's No Evap/CCP DTC's No misfire DTC's No IAT sensor DTC's No MAP DTC's No Fuel trim DTC's No injector DTC's No EGR DTC's No ECT sensor DTC's No crank sensor DTC's No MAF DTC's Closed loop Air/Fuel ratio ≥ 14.4 but ≤ 14.9 Throttle position > 5% but < 40% Above met for 3 sec. or 5 sec. in PE | 1400 test
failures in a
1500 test
sample
Continuous | Exhaust
Oxygen Sensor | DTC Type
B | | O2S Circuit-High
Voltage(Bank 1,
Sensor 2) | P0138 | Analog | .1V to 1.0V This DTC determines if the O2 sensor or circuit is shorted to high by checking for a rich condition during steady throttle and DFCO | O2 sensor voltage >.999 volts or O2 sensor voltage > .800 volts in DFCO mode | No TP sensor DTC's No Evap/CCP DTC's No mistire DTC's No IAT sensor DTC's No MAP DTC's No Fuel trim DTC's No injector DTC's No EGR DTC's No EGR DTC's No ECT sensor DTC's No crank sensor DTC's No MAF DTC's ECT > 75C Closed loop Alr/Fuel ratio ≥ 14.4 but ≤ 14.9 Throttle position > 5% but < 40% Above met for 5 sec. or 1.8 sec. in DFCO | 750 test failures
in a 1000 test
sample
Continuous | Exhaust
Oxygen Sensor | DTC Type
B | | SENSED
PARAMETER | FAULT
CODE | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |--|---------------|--------------------------|---|---|---|--|--------------------------|--| | O2S Circuit-No
Activity Detected
(Bank 1,Sensor 2) | P0140 | Analog | .1V to 1.0V This DTC determines if the O2 sensor or the O2 sensor circuit has developed an open. | O2 sensor > .400 V
but < .500 V | No TP sensor DTC's No Evap/CCP DTC's No misfire DTC's No IAT sensor DTC's No MAP DTC's No Fuel trim DTC's No injector DTC's No EGR DTC's No ECT sensor DTC's No crank sensor DTC's No MAF DTC's Engine run time > 30 seconds ECT > 65°C | 1400 test
failures in a
1500 test
sample
Continuous | Exhaust
Oxygen Sensor | DTC Type
B | | O2S Heater Circuit
Malfunction (Bank 1,
Sensor 2) | P0141 | Software | 9V to 16V This DTC determines if the O2 sensor heater is functioning properly by monitoring the amount of time necessary for the O2 sensor to become active after start - up. | The elapsed time to obtain ± .150V from the mean O2 bias voltage. *Time based on table: Time vs. Avg. MAF + Start up coolant offset. | No TP sensor DTC's No Evap/CCP DTC's No misfire DTC's No MAP DTC's No MAP DTC's No Fuel trim DTC's No injector DTC's No EGR DTC's No EGR DTC's No ECT sensor DTC's No crank sensor DTC's No MAF DTC's Engine run time > 3 seconds Δ ECT vs. IAT < 5 °C ECT < 100°C IAT < 100°C Avg MAF < 28gps 9 < System Voltage < 16 for 3 seconds350 V < Avg. Bias < .500 V. | From cold start to
a maximum time of
409 seconds. *Time determined
by table. | Exhaust
Oxygen Sensor | DTC Type
B | | SENSED
PARAMETER | FAULT
CODE | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |-----------------------------|---------------|--------------------------|---|--|--|---|---|--| | System Too Lean
(Bank 1) | P0171 | Software | Determines if the system is in a lean condition. | The average of short term fuel trim samples ≥ 1.09 and The average of adaptive index multiplier samples ≥ 1.2 | The following DTC's are not set: VSS DTC's EST DTC's Crank sensor DTC's Crank sensor DTC's Cam sensor DTC's TPS DTC's Misfire DTC's Injector DTC's Injector DTC's MAP DTC's O2 sensor DTC's MAP DTC's EGR DTC's Evap. DTC's ECT DTC's IT DTC's Throttle position < 90% Engine speed > 650 rpm but < 5000 rpm Baro > 70 kpa ECT > 20°C but < 110°C MAP > 18 kpa but < 95 kpa IAT > 18 °C but < 65°C Air flow > 3.5 g/s < 175 g/s Vehicle speed < 70 mph | If lean counter is ≥5 counts Continuous | Short term fuel trim ,adaptive index multiplier and O2 sensor | DTC Type
B | | | | | | r | | T | , | , | |---|-------------|--------------------------|---|---|---|---|---|--| | SENSED
PARAMETER | FAULT | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | | System Too Rich
(Bank 1) | P0172 | Software | Determines if the system is in a rich condition. | The average of short term fuel trim samples ≤ .985 and The average of adaptive index multiplier samples < 0.76 | The following DTC's are not set: VSS DTC's EST DTC's Crank sensor DTC's Crank sensor DTC's TPS DTC's Misfire DTC's Injector DTC's Injector DTC's MAF DTC's O2 sensor DTC's MAP DTC's EGR DTC's EGR DTC's EVap. DTC's ECT DTC's IAT DTC's IAT DTC's IAT DTC's Throttle position < 90% Engine speed > 650 rpm but < 5000 rpm Baro > 70 kpa ECT > 20°C but < 110°C MAP > 18 %C but < 65°C Air flow > 3.5 g/s < 175 g/s Vehicle speed < 70 mph | If rich counter is ≥5 counts Continuous | Short term fuel trim ,adaptive index multiplier and O2 sensor | DTC Type
B | | O2 Sys. Fault -
Too Few O2S R/L
or L/R Switches,
Insufficient Activity
(Bank 1, Sensor 1) | P1133 | Analog | .1V to 1.0V This DTC determines if the O2 sensor functioning properly by monitoring the number of L/R and R/L switches. | Number of switches in
100 seconds:
L/R switches <40
R/L switches <40
O2 voltage between
.300 and .600V | No Misfire DTC's No Crank sensor DTC's No injector DTC's No MAF DTC's No TP sensor DTC's No Evap. DTC's No IAT sensor DTC's No MAP DTC's No Fuel trim DTC's No EGR DTC's No ECT sensor DTC's DTC P0135 (O2 Heater) not set Closed loop | 100 seconds after closed loop enable Once per key cycle | Exhaust
Oxygen Sensor | DTC Type
B | | SENSED
PARAMETER | FAULT | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |---|---|--------------------------|---|--|--|--|--|--| | O2S Incorrect
Ratio (Bank 1,
Sensor 1) | P1134 | Analog | .1V to 1.0V This DTC diagnoses degraded slow rich to lean or lean to rich response times. | Ratio of average response times. Ratio > 3.75 or < 0.2 O2 voltage between .300 and .600V | No Misfire DTC's No Crank sensor DTC's No injector DTC's No injector DTC's No MAF DTC's No TP sensor DTC's No Evap. DTC's No IAT sensor DTC's No MAP DTC's No Fuel trim DTC's No EGR DTC's No ECT sensor DTC's DTC P0135 (O2 Heater) not set Closed loop | 100 seconds
after closed
loop enable
Once per key
cycle | Exhaust
Oxygen Sensor | DTC Type
B | | Injector Circuit
Fault | P1200 | Digital | 9V - 16V | Output state is invalid | | 5 sec | Software | DTC Type
B | | Random Misfire Detected Cylinder 1 Misfire Detected Cylinder 2 Misfire Detected Cylinder 3 Misfire Detected Cylinder 4 Misfire Detected Cylinder 5 Misfire Detected Cylinder 6 Misfire Detected | P0300 P0301 P0302 P0303 P0304 P0305 P0306 | Digital | These DTC 's will determine if a random misfire or a cylinder specific misfire is occuring by monitoring crankshaft velocity. | Deceleration index vs Engine Speed vs Load and CamshaftPosition | No VSS DTC's No transmission DTC's No fuel trim DTC's No TP sensor DTC's No MAP sensor DTC's No ECT sensor DTC's No Evap DTC's No Evap DTC's No Injector DTC's No Injector DTC's No EST DTC's No EGR DTC's No Cam sensor DTC's No Cam sensor DTC's No Cam sensor DTC's No MAF sensor DTC's Fuel cutoff not active Brake torque management not active ECT > -6.75°C but < 120°C Engine speed > 450 RPM but < 5800 RPM System voltage > 9 volts but < 16 volts + Throttle position \(\lambda < 6.25\%/100\)ms Rough Road- Ratio of consecutive positive peak delta ref times to nonconsecutive peaks. | 5 failed 200 revolution blocks out of 16 Emission Level 1 failed 200 revolution block Catalyst damaging Level Continuous | Crankshaft position sensor and target wheel and camshaft position sensor | DTC Type B EMISSION DTC Type A CATALYST DAMAGING | | SENSED
PARAMETER | FAULT
CODE | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |---|---------------|--------------------------|---|--|--|--|-------------------------------------|--| | Crankshaft Position Sensor Circuit- Range/Perf | P0336 | Digital | 24X Signal This diagnostic will detect an incorrect signal from the crankshaft sensor. | If in one engine cycle 48 med. res. pulses are not seen | Engine run time > 3 sec
3X crank signal | 450 ref pulse
failures within a
500 sample
limit. | Hall Effect
Crankshaft
Sensor | DTC Type
B | | Camshaft Position
Sensor Circuit
Range/Perf | P0341 | Digital | 1X Signal This diagnostic will detect if the Cam Sensor signal is present. | Engine Running Cam Sensor reference pulse is not seen once every Engine cycle. | | If Cam signal is not detected 450 out of 500 test samples. | Hall Effect
Cam Sensor | DTC Type
B | | EST Output High | P1350 | Digital | 0 V-5V This diagnostic will determine if a failure has occured due to an open circuit. | EST voltage >4.9 V | EST Enabled
Engine speed < 450 RPM | EST circuit
open ≥ 5 sec
Once per
igniton cycle | Software | DTC Type
B | | EST Not Toggling
After Enable | P1361 | Digital | 0 V-1V This diagnostic will determine if a failure has occured due to a grounded circuit. | EST voltage <.04V | EST Enabled
Engine speed > 600 RPM
No P1350 DTC | >10 seconds Once per igniton cycle | Software | DTC Type
B | | Crank to Low Res
Correlate | P1374 | Digital | Pulsed 0V to 10V | 3X signal
24X signal | Engine runtime > 3 sec
Incorrect number of 3X signals per
engine cycle | 450 out of 500 test samples Continuous | Hall Effect Switch Software | DTC Type
B | | SENSED
PARAMETER | FAULT | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |---|-------|--------------------------|---|---|--|---|---|--| | Exhaust Gas
Recirculation -
Insufficient Flow
Detected | P0401 | Analog | This diagnostic will determine if there is a reduction in EGR flow. | With EGR valve open, the peak + MAP Δ is monitored over a time of 2.5 seconds. This value is compared with a threshold from Engine Speed vs Baro table and the difference computed. The result is statistically filtered (EWMA) and compared to a decision limit. DTC is set when the filtered result exceeds the decision limit. | Test Enable No Injector DTC's set No Crank Sensor DTC's set No TP sensor DTC's set No WS sensor DTC's set No VS sensor DTC's set No IAT sensor DTC's set No IAT sensor DTC's set No IAT sensor DTC's set No IAC DTC's set No IAC DTC's set No IAC DTC's set No IAC DTC's set No MAF DTC's set No MAF DTC's set MAP Δ < 4 KPA RPM Δ < 200 MPH Δ < 5 ECT > 80° C Baro > 65 kpa (12000 ft) Vehicle Speed > 30 mph IAC Δ < 2 counts AC clutch status is unchanged Transmission status is unchanged Transmission status is unchanged Start Test Throttle Position < 1% EGR Position < 1% Engine Speed > 800 mm but < 1500 mm MAP Δ < 1.5 A/D count Compensated MAP > 20 kpa but < 50 kpa Run Test Stabilized MAP (valve closed) recorded and EGR valve "ramped" open over a time interval and peak MAP value recorded and MAP Δ computed. EGR valve "ramped" closed over a time Interval. | Once per trip or 13 times after NVM Failure. | Manifold Absolute Pressure Δ and software | DTC Type
A | | | | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | · · · · · · · · · · · · · · · · · · · | | |---|-------|--------------------------|---|---|---|---|---------------------------------------|--| | SENSED
PARAMETER | FAULT | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | | Catalyst System
Efficiency Below
Threshold | P0420 | Analog | This diagnostic will determine the efficiency of the catalytic converter. | Deviation Difference
Average = 14 mv from
O2 sensor #2 | No EST DTC's set No EGR DTC's set No MAT DTC's set No injector DTC's set No VS sensor DTC's set No VS sensor DTC's set No D2 sensor DTC's set No Map sensor DTC's set No MAP sensor DTC's set No MAP sensor DTC's set No Fuel Trim DTC's set No ECT sensor DTC's set No ECT sensor DTC's set No ECT sensor DTC's set No Exap DTC's set No Crank sensor DTC's set Converter Warm Up Status Engine In closed loop Commanded Air/Fuel ratio = 14.7:1 ECT > 75° C Air flow > 15 g/sec Above met for a time > 180 seconds Test Enabte Air Flow ≤ 30 g/sec \(\) engine load \(\) 70% / sec \(\) Vehicle Speed \(\) 40 mph but \(\) 75 mph Engine load \(\) 63% \(\) 1000 rpm \(\) Engine speed \(\) 3000 rpm | 50 tests per trip Continuous | O2 sensor #1
and
O2 sensor #2 | DTC Type
A | | Evap. Emission
Control System -
Incorrect Purge
Flow | P0441 | Digital | OV-5V This diagnostic will detect a purge solenoid stuck closed by monitoring the Evap. Purge Vacuum switch state when the Evap. Purge solenoid duty cycle is > 85%. The vacuum switch state should change to high (open) if there is vacuum (solenoid open) applied to the system. | Evap. purge vacuum
switch state = Low
(closed) vacuum for a
period > 4 seconds | No MAT DTC's set No MAP DTC's set No TP sensor DTC's set No Air flow DTC's set Baro > 70 kPa (10000 ft) ECT ≤ 113 °C Powerup IAT > 5°C IAT :: 70 °C ECT-IAT <: 5°C Purge DC ≥ 85% Manifold Vacuum ≥ 10kPa Throttle Position ≥3% but ≤ 38% Engine Speed ≥ 550 RPM but ≤ 5000 RPM | For 4 test
failures
Continuous | Evap. Purge
Vacuum Switch | DTC Type
B | | SENSED
PARAMETER | FAULT
CODE | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |---|---------------|--------------------------|--|---|--|---|---------------------------------|--| | Exhaust Gas
Recirculation
System - Pintle
Position Error | P1406 | Analog | 0V 0 5V This diagnostic will detect three conditions: 1. An open or short 2. Closed valve position too high 3. Position error too high | Pintle position < 7 A/D counts for 20 seconds Pintle position > 20 A/D counts from learned closed valve position for 20 seconds Deviation between actual position and desired position > 20% for 20 seconds | Ignition voltage > 9 volts 5 volt supply OK | All three tests
must run before
a failure is
reported.
Continuous | Potentiometer | DTC Type
B | | Evap. Emission
Control System -
Continuous Open
Purge Flow | P1441 | Digital | OV-5V This diagnostic will detect a purge solenoid stuck open by monitoring the Evap. Purge Vacuum switch state when the Evap. Purge solenoid duty cycle is < 3%. The vacuum switch state should change to low (closed) if there is no vacuum (solenoid closed) applied to the system. | Evap. purge vacuum
switch state = High
vacuum for a period >
4 seconds | No Air flow DTC's set No MAP DTC's set No TP sensor DTC's set No EGR DTC's set Baro > 70 kPa (10000 ft) ECT ≤ 113 °C Powerup IAT > 5°C IAT ≤ 70 °C ECT-IAT ≤ 5°C Purge DC ≤ 3% Manifold Vacuum ≥ 10kPa Throttle Position ≥3% but ≤ 38% Engine Speed ≥ 550 RPM but ≤ 5000 RPM | For 4 test
failures
Continuous | Evap. Purge
vacuum
switch | DTC Type
B | | SENSED
PARAMETER | FAULT
CODE | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |---|---------------|--------------------------|---|---|--|---|----------------------|--| | Idle Control
System RPM
Lower Than
Expexcted | P0506 | Software | This DTC will determine if a low idle condition exists. A low idle condition exists if the Actual RPM is below the desired RPM. | RPM < Desired RPM
Δ RPM = table based
on RPM vs. ECT.
(-175 to -300 RPM) | Test Enable: No CCP DTC's set No misfire DTC's set No EGR DTC's set No TP sensor DTC's set No ECT DTC's set No ECT DTC's set No ECT DTC's set No MAP DTC's set No IAT DTC's set No IAT DTC's set No Injector DTC's set No Injector DTC's set No Crank Sensor DTC's set No Air Flow DTC's set ECT > 70°C System Voltage > 9V but < 16 V IAT > -18°C Engine run time > 120 seconds Baro > 65 kPa (12000 ft) TP < 1.5% VS < 3 MPH Above met for a time > 5 seconds to enable diagnostic. | 15 seconds Continous after enable | Software | DTC Type
B | | Idle Control System RPM Higher Than Expected | P0507 | Software | This DTC will determine if a high idle condition exists. A high idle condition exists if the Actual RPM is above the desired RPM. | RPM > Desired RPM. Δ RPM = table based on RPM vs. ECT. (+175 to +300 RPM) | Test Enable: No CCP DTC's set No misfire DTC's set No EGR DTC's set No TP sensor DTC's set No VS sensor DTC's set No ECT DTC's set No ECT DTC's set No MAP DTC's set No Injector DTC's set No Injector DTC's set No Injector DTC's set No Injector DTC's set No Air Flow DTC's set No Air Flow DTC's set ECT > 70°C System Voltage > 9V but < 16 V IAT > -18°C Engine run time > 120 seconds Baro > 65 kPa (12000 ft) TP < 1.5% VS < 3 MPH Above met for a time > 5 seconds to enable diagnostic. | 15 seconds Continous after enable | Software | DTC Type
B | | SENSED
PARAMETER | FAULT
CODE | SENSOR
SIGNAL
TYPE | ACCEPTABLE
OPERATING
RANGE AND
RATIONALITY | PRIMARY MALF
DETECTION
PARAMETERS | SECONDARY MONITORING
PARAMETERS AND
CONDITIONS | MONITORING
TIME LENGTH
AND
FREQUENCY OF
CHECK | MONITORING
METHOD | FAULT CODE
STORAGE AND
MIL
ILLUMINATION | |-------------------------------------|---------------|--------------------------|---|---|--|---|----------------------|--| | V5BA Voltage
Circuit Fault | P1635 | Analog | 5 Volts | Voltage state invalid | | 10 sec
Continuous | Software | DTC Type
B | | Fan 1 Relay
Circuit Fault | P1651 | Digital | 0V to 12V | Output state invalid | PCM state = crank or run | 20 sec
Continuous | Software | DTC Type
B | | Fan 2 Relay
Circuit Fault | P1652 | Digital | 0V to 12V | Output state invalid | PCM state = crank or run | 20 sec
Continuous | Software | DTC Type
B | | CCP Solenoid
Circuit Malfunction | P1655 | Digital | OV to 12V | Output state invalid | PCM state = crank or run | 20 sec
Continuous | Software | DTC Type
B |