| Parameter              | Minimum          | Maximum           |
|------------------------|------------------|-------------------|
| Engine coolant temp.   | 70 (158) °C (°F) | 110 (230) °C (°F) |
| Intake air temp.       | –10 (14) °C (°F) | 70 (158) °C (°F)  |
| Barometric pressure    | 560 mmHg         |                   |
| Fuel level             | 15%              |                   |
| Time from engine start | 360 s            |                   |
| Engine speed           | 2300 rpm (MT)    | 4500 rpm (MT)     |
|                        | 1500 rpm (AT)    | 4500 rpm (AT)     |
| Calculated MAF         | 6.4 g/s          | 17 g/s            |
| Fuel system status     | Closed loop mode |                   |
| Calculated load value  | 26%              | 80%               |

## **Typical malfunction thresholds**

Delay of rear oxygen sensor response > 688 – 762 ms (According to Calculated MAF)

#### **MODE \$06 Data**

| Solf diagnostic test item           | Test value |      | Description               | Scaling        |  |
|-------------------------------------|------------|------|---------------------------|----------------|--|
| Sell diagnostic test item           | TID        | CID  | Description               | Scalling       |  |
|                                     | \$01       | \$00 | Response time             | *8.19/256 msec |  |
| Three-way catalyst Function (P0420) | ¢01        | \$10 | Counter of secondary HO2S | *1/256 times   |  |
|                                     | φUT        | φīŪ  | voltage change            | 1/230 times    |  |

# **OBD System Description - Misfire Monitor**

#### STSW011111010 (03(01)

# **System Description / Monitoring Procedure**

ECM (PCM) measures the angle speed of the crankshaft based on the pulse signal from the CKP sensor and CMP sensor for each cylinder. If it detects a large change in the angle speed of the crankshaft, it concludes occurrence of a misfire. When the number of misfire is counted by the ECM (PCM) beyond the DTC detecting condition, it determines the cylinder where the misfire occurred and outputs it as DTC.

# **DTC Description / Detecting Condition / Confirmation Procedure**

#### P0300, P0301, P0302, P0303

Refer to "DTC P0300 / P0301 / P0302 / P0303: Random Misfire (Misfire Detected at 2 or More Cylinders) / Cylinder 1 Misfire / Cylinder 2 Misfire / Cylinder 3 Misfire Detected".

## **Misfire Monitor**

#### Operation

| DTCs                    | P0300, P0301, P0302, P0303                                                 |
|-------------------------|----------------------------------------------------------------------------|
| Monitor execution       | Continuous                                                                 |
| Sensors / components OK | MAP sensor, TP sensor, ECT sensor, CKP sensor, CMP sensor, VSS, IAT sensor |
| Monitoring Duration     | 200 rev. (phase 1) / 1000 rev. (phase 2)                                   |

## **Enable conditions**

| Parameter                                                     | Minimum          | Maximum              |
|---------------------------------------------------------------|------------------|----------------------|
| Engine coolant temp.                                          | –10 (14) °C (°F) |                      |
| Intake air temp.                                              |                  | 70 (158) °C (°F)     |
| Engine speed                                                  |                  | 4500 rpm             |
| Barometric pressure                                           | 560 mmHg         |                      |
| Engine speed change                                           |                  | 200 rpm / 50 ms      |
| MAP change                                                    |                  | 10 mmHg / 16 firings |
| Fuel level                                                    | 15%              |                      |
| Time from engine start                                        | 5 s              |                      |
| Time from fuel shut off                                       | 1 s              |                      |
| Time from switching of AC, PSS, radiator fan or electric load | 8 rev.           |                      |

#### **Typical malfunction thresholds**

| Phase 1: | Catalyst damage > 6 – 50% (According to Engine Speed and MAP) |
|----------|---------------------------------------------------------------|
| Phase 2: | FTP emission threshold > 3%                                   |

| Parameter      | Minimum | Maximum |
|----------------|---------|---------|
| Heater control | On      |         |

### **Typical malfunction thresholds**

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                               |
|-----------------------------------------|-------------------------------|
| Phase 1:                                | Resistor voltage < 2.5 V      |
| Phase 2:                                | Resistor voltage $\ge$ 0.31 V |

### **Secondary HO2S Heater Monitor**

#### Operation

| DTCs                | P0141 |
|---------------------|-------|
| Monitoring Duration | 5 s   |

#### **Enable conditions**

| Parameter                    | Minimum | Maximum |
|------------------------------|---------|---------|
| Phase 1 (Heater resistance)  |         |         |
| Heater control               | Off     |         |
| Phase 2 (Circuit continuity) |         |         |
| Heater control               | On      |         |

## **Typical malfunction thresholds**

| Phase 1: | Resistor voltage < 2.5 V       |  |
|----------|--------------------------------|--|
| Phase 2: | Resistor voltage $\geq$ 0.31 V |  |

#### MODE \$06 Data

| Self diagnostic test item        | Test | Test value Description |                              | est value Description Scaling |  | Scaling |
|----------------------------------|------|------------------------|------------------------------|-------------------------------|--|---------|
| (related DTC)                    | TID  | CID                    | Description                  | Scaling                       |  |         |
| O2S 1 heater circuit malfunction | \$06 | \$00                   | Heater voltage at heater on  | *5/256/256 V                  |  |         |
| (P0135)                          | \$06 | \$00                   | Heater voltage at heater off | *5/256/256 V                  |  |         |
| O2S 2 heater circuit malfunction | \$07 | \$00                   | Heater voltage at heater on  | *5/256/256 V                  |  |         |
| (P0141)                          | \$07 | \$00                   | Heater voltage at heater off | *5/256/256 V                  |  |         |

# **OBD System Description - EGR System Monitor**

#### STSW011111015 (03(01)

## **System Description / Monitoring Procedure**

The EGR system consists of an EGR valve, an EGR pressure transducer, and an EGR solenoid vacuum valve. To detect EGR system malfunction, a MAP sensor and an EGR solenoid vacuum valve (for system check) are added to the EGR system.

The intake pressure changes are measured by two kinds of procedure. One method is the measuring of the pressure change during the steady state condition switching the EGR solenoid vacuum valve on and off to detect entire system leak. Another method is the measuring of the pressure change during deceleration condition switching the EGR solenoid vacuum valve (for system check) on and off to detect EGR valve failure.

## EGR System Monitoring System



DTC Description / Detecting Condition / Confirmation Procedure P0400

Refer to "DTC P0400: Exhaust Gas Recirculation Flow Malfunction".

# **EGR System Monitor**

### Operation

| DTCs                | P0400                         |
|---------------------|-------------------------------|
| Monitoring Duration | 2 s (phase 1) / 1 s (phase 2) |

#### **Enable conditions**

| Parameter              | Minimum            | Maximum              |  |
|------------------------|--------------------|----------------------|--|
| Phase 1                |                    |                      |  |
| Engine coolant temp.   | 70 (158) °C (°F)   | 110 (230) °C (°F)    |  |
| Intake air temp.       | −10 (14) °C (°F)   | 70 (158) °C (°F)     |  |
| Barometric pressure    | 560 mmHg           |                      |  |
| Engine speed           | 1400 rpm           | 4000 rpm             |  |
| Vehicle speed          | 32 km/h            |                      |  |
| TP change              |                    | 0.244 ° / 16 firings |  |
| Time from engine start | 240 s              |                      |  |
| EGR system status      | EGR control mode   | EGR control mode     |  |
| Phase 2                |                    |                      |  |
| Engine coolant temp.   | 70 (158) °C (°F)   | 110 (230) °C (°F)    |  |
| Intake air temp.       | −10 (14) °C (°F)   | 70 (158) °C (°F)     |  |
| Barometric pressure    | 560 mmHg           |                      |  |
| Engine speed           | 1700 rpm           | 4000 rpm             |  |
| Vehicle speed          | 32 km/h            |                      |  |
| Time from engine start | 290 s              |                      |  |
| Fuel system status     | Fuel shut off mode | Fuel shut off mode   |  |

## **Typical malfunction thresholds**

| Phase 1: | Intake pressure difference: 1.2 – 6.0 mmHg (According to BARO Pressure) |
|----------|-------------------------------------------------------------------------|
| Phase 2: | Intake pressure difference: 23 – 70 mmHg (According to Engine Speed)    |

## MODE \$06 Data

| Self diagnostic test item | Test value |      | Description           | Scaling            |
|---------------------------|------------|------|-----------------------|--------------------|
| (related DTC)             | TID        | CID  | Description           | Scaling            |
| EGR (P0400)               | \$08       | \$00 | Differential pressure | *1250/256/256 mmHg |
|                           | \$08       | \$00 | Differential pressure | *1250/256/256 mmHg |
| EGR (P0400)               | \$0A       | \$00 | Differential pressure | *1250/256/256 mmHg |
|                           | \$0A       | \$00 | Differential pressure | *1250/256/256 mmHg |

# **OBD System Description - Comprehensive Component (Engine Input) Monitor**

## **Monitoring Procedure**

#### STSW011111017 (03(01)

- Input signals of MAP (P0106 / P0107 / P0108), IAT (P0112 / P0113), ECT (P0117 / P0118 / P0125), TP (P0121 / P0122 / P0123), CKP sensor (P0335), CMP sensor (P0340), Fuel tank pressure sensor (P0450), Fuel level sensor (P0461 / P0463), Vehicle speed sensor (P0500), Closed throttle position switch (P0510) and Barometric pressure sensor (P1450), Engine starter signal (P1500), ECM back-up power circuit (P1510), Ignition timing adjustment switch circuit (P1530) are checked for open, short of circuit or sensor rationality by monitoring input voltage.
- Barometric pressure sensor performance problem (P1451) is monitored by comparing manifold MAP sensor value with barometric pressure sensor value.

DTC Description / Detecting Condition / Confirmation Procedure P0106 Refer to "DTC P0106: Manifold Absolute Pressure (MAP) Circuit Performance Problem". P0107 Refer to "DTC P0107: Manifold Absolute Pressure (MAP) Circuit Low Input". P0108

Refer to "DTC P0108: Manifold Absolute Pressure (MAP) Circuit High Input".

P0112

Refer to "DTC P0112: Intake Air Temperature (IAT) Circuit Low Input".

P0113

Refer to "DTC P0113: Intake Air Temperature (IAT) Circuit High Input".

P0117

Refer to "DTC P0117: Engine Coolant Temperature (ECT) Circuit Low Input".

P0118

Refer to "DTC P0118: Engine Coolant Temperature (ECT) Circuit High Input". **P0121**