1997 Metro 1.0L Page 1 of 3

Enable conditions

Parameter	Minimum	Maximum
Engine coolant temp.	70 (158) °C (°F)	110 (230) °C (°F)
Intake air temp.	-10 (14) °C (°F)	70 (158) °C (°F)
Barometric pressure	560 mmHg	
Fuel level	15%	
Time from engine start	360 s	
Engine speed	1750 rpm (MT)	3000 rpm (MT)
	1700 rpm (AT)	3500 rpm (AT)
Calculated MAF	4.0 g/s	12 g/s
Fuel system status	Closed loop mode	
Catalyst warmed-up counter	9600	

Typical malfunction thresholds

Delay of rear oxygen sensor response > 688 – 844 ms (According to Calculated MAF)

MODE \$06 Data

Self diagnostic test item	Test	value	Description	Scaling
Sen diagnostic test item	TID	CID	Description	Scaling
	\$01	\$00	Response time	*8.19/256 msec
Three-way catalyst Function (P0420)	\$01	\$10	Counter of secondary HO2S	*1/256 times
	φυι	φισ	voltage change	

OBD System Description - Misfire Monitor

SVSW011111010 (03(01)

System Description / Monitoring Procedure

ECM (PCM) measures the angle speed of the crankshaft based on the pulse signal from the CKP sensor and CMP sensor for each cylinder. If it detects a large change in the angle speed of the crankshaft, it concludes occurrence of a misfire. When the number of misfire is counted by the ECM (PCM) beyond the DTC detecting condition, it determines the cylinder where the misfire occurred and outputs it as DTC.

DTC Description / Detecting Condition / Confirmation Procedure

P0300, P0301, P0302, P0303

Refer to "DTC P0300 / P0301 / P0302 / P0303: Random Misfire (Misfire Detected at 2 or More Cylinders) / Cylinder 1 Misfire / Cylinder 2 Misfire / Cylinder 3 Misfire Detected.

Misfire Monitor

Operation

DTCs	P0300, P0301, P0302, P0303
Monitor execution	Continuous
Sensors / components OK	MAP sensor, TP sensor, ECT sensor, CKP sensor, CMP sensor, VSS, IAT sensor
Monitoring Duration	200 rev. (phase 1) / 1000 rev. (phase 2)

Enable conditions

Parameter	Minimum	Maximum
Engine coolant temp.	–10 (14) °C (°F)	
Intake air temp.		70 (158) °C (°F)
Engine speed		4500 rpm
Fuel level	15%	
Barometric pressure	560 mmHg	
Engine speed change		165 rpm / 33 ms
MAP change		9.77 mmHg / firing
Time from engine start	5 s	
Time from fuel shut off	3 s	
Time from switching of AC, PSS, radiator fan or electric load	8 rev.	

Typical malfunction thresholds

Phase 1: Catalyst damage > 6 – 50% (According to Engine Speed and MAP)

Phase 2: FTP (I/M) emission threshold > 3%

1997 Metro 1.0L Page 2 of 3

Primary HO2S Heater Monitor

Operation

DTCs	P0135
Monitor execution	Continuous
Monitoring Duration	5 s

Enable conditions

Parameter	Minimum	Maximum
Phase 1 (Heater resistance)		
Heater control	Off	
Phase 2 (Circuit continuity)		
Heater control	On	

Typical malfunction thresholds

Phase 1:	Resistor voltage < 2.5 V
Phase 2:	Resistor voltage > 0.488 V

Secondary HO2S Heater Monitor

Operation

DTCs	P0141
Monitor execution	Continuous
Monitoring Duration	5 s

Enable conditions

Parameter	Minimum	Maximum
Phase 1 (Heater resistance)		
Heater control	Off	
Phase 2 (Circuit continuity)		
Heater control	On	

Typical malfunction thresholds

Phase 1:	Resistor voltage < 2.5 V
Phase 2:	Resistor voltage > 0.488 V

MODE \$06 Data

Self diagnostic test item	Test	value	Description	Scaling
(related DTC)	TID	CID	Description	Scaling
O2S 1 heater circuit malfunction	\$06	\$00	Heater voltage at heater on	*5/256/256 V
(P0135)	\$06	\$00	Heater voltage at heater off	*5/256/256 V
O2S 2 heater circuit malfunction	\$07	\$00	Heater voltage at heater on	*5/256/256 V
(P0141)	\$07	\$00	Heater voltage at heater off	*5/256/256 V

OBD System Description - EGR System Monitor

System Description / Monitoring Procedure

SVSW011111015 (03(01)

The EGR system consists of an EGR valve, an EGR pressure transducer, and an EGR solenoid vacuum valve. To detect EGR system malfunction, a MAP sensor and an EGR solenoid vacuum valve (for system check) are added to the EGR system.

The intake pressure changes are measured by two kinds of procedure. One method is the measuring of the pressure change during the steady state condition switching the EGR solenoid vacuum valve on and off to detect entire system leak. Another method is the measuring of the pressure change during deceleration condition switching the EGR solenoid vacuum valve (for system check) on and off to detect EGR valve failure.

EGR System Monitoring System

1997 Metro 1.0L Page 3 of 3

DTC Description / Detecting Condition / Confirmation Procedure

Refer to "DTC P0400: Exhaust Gas Recirculation Flow Malfunction".

EGR System Monitor

Operation

DTCs	P0400
Monitor execution	Once per driving cycle
Monitoring Duration	Functional check: 1.5 s (phase 1) / EGR valve flow check: 1 s (phase 2)

Enable conditions

Parameter	Minimum	Maximum			
Phase 1 (Functional check)					
Engine coolant temp.	70 (158) °C (°F)	110 (230) °C (°F)			
Intake air temp.	−10 (14) °C (°F)	70 (158) °C (°F)			
Barometric pressure	560 mmHg				
Engine speed	2000 rpm	2800 rpm (MT)			
		3500 rpm (AT)			
Vehicle speed	32 km/h				
TP change		0.244 ° / 16 firings			
Time from engine start	230 s				
EGR system status	EGR control mode				
Phase 2 (EGR valve flow check)					
Engine coolant temp.	70 (158) °C (°F)	110 (230) °C (°F)			
Intake air temp.	−10 (14) °C (°F)	70 (158) °C (°F)			
Barometric pressure	560 mmHg				
Engine speed	1700 rpm	3000 rpm			
Vehicle speed	32 km/h				
Time from engine start	290 s				
Fuel system status	Fuel shut off mode				

Typical malfunction thresholds

Typical manufiction unconords				
Phase 1 (Functional check)				
Low flow side: BARO – MAP: 0 – 7.4 (According to BARO (mmHg))				
High flow side: BARO – MAP: 45 – 75 (According to BARO (mmHg))				
Phase 2 (EGR valve flow check)				
MAP difference: 14.9 – 23 mmHg (According to Engine Speed (rpm))				

MODE \$06 Data

Self diagnostic test item (related DTC)	Test value		Description	Saaling
	TID	CID	Description	Scaling
EGR (P0400)	\$08	\$00	Differential pressure	*1250/256/256 mmHg
	\$08	\$00	Differential pressure	*1250/256/256 mmHg
	\$0A	\$00	Differential pressure	*1250/256/256 mmHg
	\$0A	\$00	Differential pressure	*1250/256/256 mmHg

OBD System Description - Comprehensive Component (Engine Input) Monitor

SVSW011111016 (03(01)

Monitoring Procedure

- Input signals of MAP (P0106 / P0107 / P0108), IAT (P0112 / P0113), ECT (P0117 / P0118 / P0125), TP (P0121 / P0122 / P0123), CKP sensor (P0335), CMP sensor (P0340), Fuel tank pressure sensor (P0450, P0451), Fuel level sensor (P0461 / P0463), Vehicle speed sensor (P0500), Closed throttle position switch (P0510) and Barometric pressure sensor (P1450), Engine starter signal (P1500), ECM back-up power circuit (P1510), Ignition timing adjustment switch circuit (P1530) are checked for open, short of circuit or sensor rationality by monitoring input voltage.
- Barometric pressure sensor performance problem (P1451) is monitored by comparing manifold MAP sensor value with barometric pressure sensor value.