MODE \$06 Data

Solf diagnostic tost itom	Test value		Description	Scaling	
Sen diagnostic test item	TID	CID	Description	Scalling	
	\$02	\$00	Response time	*8.19/256 msec	
Three-way catalyst Function (P0420)	\$02	\$10	Counter of secondary HO2S voltage change	*1/256 times	

OBD System Description - Misfire Monitor

System Description / Monitoring Procedure

ECM (PCM) measures the angle speed of the crankshaft based on the pulse signal from the CKP sensor and CMP sensor for each cylinder. If it detects a large change in the angle speed of the crankshaft, it concludes occurrence of a misfire. When the number of misfire is counted by the ECM (PCM) beyond the DTC detecting condition, it determines the cylinder where the misfire occurred and outputs it as DTC.

DTC Description / Detecting Condition / Confirmation Procedure

P0300, P0301, P0302, P0303, P0304

Refer to "DTC P0300 / P0301 / P0302 / P0303 / P0304: Random Misfire (Misfire Detected at 2 or More Cylinders) / Cylinder 1 Misfire / Cylinder 2 Misfire / Cylinder 3 Misfire / Cylinder 4 Misfire Detected".

Misfire Monitor

Operation

DTCs	P0300, P0301, P0302, P0303, P0304
Monitor execution	Continuous
Sensors / components OK	MAP sensor, TP sensor, ECT sensor, CKP sensor, CMP sensor, VSS, IAT sensor
Monitoring Duration	200 rev. (phase 1) / 1000 rev. (phase 2)

Enable conditions

Parameter	Minimum	Maximum
Engine coolant temp.	–10 (14) °C (°F)	
Intake air temp.		70 (158) °C (°F)
Engine speed		4500 rpm
Barometric pressure	560 mmHg	
Fuel level	15%	
Engine speed change		165 rpm / 33 ms
MAP change		9.77 mmHg / firing
Time from engine start	5 s	
Time from fuel shut off	3 s	
Time from switching of AC, PSS, radiator fan or electric load	8 rev.	

Typical malfunction thresholds

Phase 1:	Catalyst damage > 8 – 50% (According to Engine Speed and MAP)
Phase 2:	FTP emission threshold > 2.5% or 2.75%

OBD System Description - EVAP Control System Monitor

System Description / Monitoring Procedure

To monitor the EVAP control system, a fuel tank pressure sensor and an EVAP canister air (vent) valve are added to the system.

The monitoring system measures pressure change of closed EVAP system circuit under the depressurized condition. The system also measures pressure change of closed circuit to compensate evaporative pressure with the normal range pressure, if necessary.

EVAP System Monitoring System (ORVR)

IWSW01111043-01

SXSW011101011 (03(01)

SXSW011101012 (03(01)

IWSW01111044-01

(P2 – P1) – (P3 – P4): Malfunction Parameter P3 – P4: Parameter for Compensation of Vapor Pressure

DTC Description / Detecting Condition / Confirmation Procedure P0440, P0455

Refer to "DTC P0440 / P0455: EVAP System Malfunction / Leak Detected (Gross Leak)".

EVAP Control System Monitor

Operation

DTCs	P0440
Monitor execution	Once per driving cycle
Sensors / components OK	ECT, IAT, Fuel level sensor, BARO sensor, VSS, Fuel tank pressure sensor, Fuel
	tank pressure control valve
Monitoring Duration	20 s – 2 min
DTCs	P0455 (gross leak)
Monitor execution	Once per driving cycle
Sensors / components OK	ECT, IAT, Fuel level sensor, BARO sensor, VSS, Fuel tank pressure sensor, Fuel
	tank pressure control valve
Monitoring Duration	80 s

Enable conditions

Parameter	Minimum	Maximum
P0440, P0455		
Engine coolant temp.	70 (158) °C (°F)	
Intake air temp.	–10 (14) °C (°F)	70 (158) °C (°F)
Barometric pressure	560 mmHg	
Calculated MAF		30 g/s
Fuel level		85%
Purge accumulation time	200 s	
Vehicle speed	2 km/h	104 km/h
MDP	170 mmHg	
Fuel system status	Closed loop mode	
Misfire	Not detected	
Fuel system	Normal	

Typical malfunction thresholds

P0440
Tank pressure change during depressurized condition > 7.4 – 13.8 mmHg (According to Fuel Level)
P0455
Tank pressure during depressurizing > -15 mmHg

MODE \$06 Data

Self diagnostic test	Test	value	Description	Scaling	
item	TID	CID	Description		
	\$04	\$00	Differential rising pressure	*125/256/256 – 62.5 mmHg	
EVAP Control System (P0440 / P0455)	\$04	\$10	Tank pressure	*125/256/256 – 62.5 mmHg	
	\$04	\$11	Tank pressure	*125/256/256 – 62.5 mmHg	
	\$04	\$20	Tank pressure	*125/256/256 – 62.5 mmHg	
	\$04	\$30	Differential pressure	*125/256/256 – 62.5 mmHg	
	\$04	\$40	Differential pressure	*125/256/256 – 62.5 mmHg	
	\$04	\$41	Change of fuel level	*50/256/256 L	

Enable conditions

Parameter	Minimum	Maximum
Phase 1, Phase 2		
Intake air temp.	–10 (14) °C (°F)	70 (158) °C (°F)
Barometric pressure	560 mmHg	
Fuel level	15%	
Engine speed	1000 rpm	
After Fuel cut duration	8.4 s	
Driving counter	5 times (2 \leftrightarrow 32 km/h)	
Heater operative time	60 s	
Fuel system status	Closed loop mode	
MAP	Steady state value	
Phase 3		
Heater operation time	60 s	

Typical malfunction thresholds

Phase 1: Maximum voltage < 0.49 V Phase 2: Minimum voltage > 0.41 V Phase 3: Pull-up voltage > 4.5 V

MODE \$06 Data

Self diagnostic test	Test	value	Description	Scaling	
item	TID	CID			
O2S 1 circuit low volt (P0131)	\$06	\$00	Minimum voltage	*5/256/256 V	
O2S 1 circuit high volt (P0132)	\$06	\$01	Maximum voltage	*5/256/256 V	
	\$06	\$02	Min switch time for rich to lean	*8.19/256 msec	
Slow response (P0133)	\$06	\$03	Min switch time for lean to rich	*8.19/256 msec	
	\$06	\$04	Mean period of feed back	*32.76/256 msec	
No activity detect	\$07	\$00	Count of irregular volt detected	*1/256 times	
(P0134)	\$07	\$01	Count of irregular volt detected	*1/256 times	
O2S 2 circuit volt	\$09	\$00	Minimum terminal voltage	*5/256/256 V	
	\$09	\$01	Maximum voltage	*5/256/256 V	
(F0130)	\$09	\$02	Time of irregular volt detected	*1.049/256 S	

OBD System Description - HO2S Heater Monitor

System Description / Monitoring Procedure

For both HO2S–1 and –2 heaters, the system monitors proper current and loaded voltage.

DTC Description / Detecting Condition / Confirmation Procedure P0135 Refer to "DTC P0135: Heated Oxygen Sensor (HO2S) Heater Circuit Malfunction (Sensor-1)". P0141

Refer to "DTC P0141: Heated Oxygen Sensor (HO2S) Heater Circuit Malfunction (Sensor-2)".

Primary HO2S Heater Monitor

Operation

DTCs	P0135
Monitor execution	Continuous
Monitoring Duration	5 s

Enable conditions

Parameter	Minimum	Maximum
Phase 1 (Heater resistance)		
Heater control	Off	
Phase 2 (Circuit continuity)		
Heater control	On	

SXSW011101015 (03(01)

Typical malfunction thresholds

Phase 1:	Resistor voltage < 2.5 V
Phase 2:	Resistor voltage > 0.488 V

Secondary HO2S Heater Monitor

Operation

DTCs	P0141
Monitor execution	Continuous
Monitoring Duration	5 s

Enable conditions

Parameter	Minimum	Maximum			
Phase 1 (Heater resistance)					
Heater control	Off				
Phase 2 (Circuit continuity)					
Heater control	On				

Typical malfunction thresholds

Phase 1:	Resistor voltage < 2.5 V
Phase 2:	Resistor voltage > 0.488 V

MODE \$06 Data

Self diagnostic test item	Test value		Description	Sociera
(related DTC)	TID	CID	Description	Scaling
	\$0B	\$00	Heater voltage at heater on	*5/256/256 V
O2S 1 heater circuit malfunction	\$0B	\$10	Heater voltage at heater off	*5/256/256 V
(P0135)	\$0B	\$20	Heater voltage at heater on	*5/256/256 V
	\$0B	\$21	Heater voltage at heater off	*5/256/256 V
	\$0C	\$00	Heater voltage at heater on	*5/256/256 V
O2S 2 heater circuit malfunction	\$0C	\$10	Heater voltage at heater off	*5/256/256 V
(P0141)	\$0C	\$20	Heater voltage at heater on	*5/256/256 V
	\$0C	\$21	Heater voltage at heater off	*5/256/256 V

OBD System Description - Comprehensive Component (Engine Input) Monitor

Monitoring Procedure

- Input signals of MAP (P0106 / P0107 / P0108), IAT (P0111 / P0112 / P0113), ECT (P0116 / P0117 / P0118 / P0125), TP (P0121 / P0122 / P0123), CKP sensor (P0335), CMP sensor (P0340), Fuel tank pressure sensor (P0450 / P0451), Fuel level sensor (P0461 / P0463), Vehicle speed sensor (P0500) and Barometric pressure sensor (P1450), Engine starter signal (P1500), ECM back-up power circuit (P1510), Ignition timing adjustment switch circuit (P1530) are checked for open, short of circuit or sensor rationality by monitoring input voltage.
- Barometric pressure sensor performance problem (P1451) is monitored by comparing manifold MAP sensor value with barometric pressure sensor value.

DTC Description / Detecting Condition / Confirmation Procedure

P0106

Refer to "DTC P0106: Manifold Absolute Pressure (MAP) Circuit Performance Problem". **P0107**

Refer to "DTC P0107: Manifold Absolute Pressure (MAP) Circuit Low Input".

P0108

Refer to "DTC P0108: Manifold Absolute Pressure (MAP) Circuit High Input".

P0111

Refer to "DTC P0111: Intake Air Temperature (IAT) Circuit Range / Performance Problem".

P0112

Refer to "DTC P0112: Intake Air Temperature (IAT) Circuit Low Input".

P0113

Refer to "DTC P0113: Intake Air Temperature (IAT) Circuit High Input".

P0116

SXSW011101016 (03(01)